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S-Parameter Matrices 

 
 
The objective of microwave circuit analysis is to move from the requirement to solve for all the 
fields and waves of a structure to an equivalent circuit that is amenable to all the tools of the 
circuit analysis toolbox.  However, the tools that are appropriate for lumped circuits must be 
extended to apply to distributed networks. 
 
A matrix that is of great use in microwave network problems is the "scattering" matrix, so-called 
by analogy to the scattering or reflection of waves by a free-space reflector.  As introduced in 
the prior notes, S-parameters have become the preferred description of microwave n-ports for 
the following reasons: 
 

Voltage and current are difficult to define and measure in distributed circuits 
 
The measurement of power in incident and reflected waves is a natural technique for 
microwave transmission lines.  Voltage and current may not be well defined, or even 
defined at all, in some structures.  The specification of voltage and current in a 
distributed circuit requires a specification of the exact location, and these parameters 
vary with location in the circuit.  The determination of the individual parameters of 
voltage and current equation sets requires short or open circuit loads, which are 
sensitive to the precise location; in particular, it is not practical to mount a connector 
close enough to a microwave lumped device to be measuring its actual port voltages 
and currents.  Also, many active devices cannot be operated with fully reflective 
terminations (short or open) of arbitrary phase, as they will oscillate, which is a large 
signal nonlinear condition and may even result in device failure. 
 
Incident and reflected waves are the natural description for microwave structures 
 
The matched condition (Γ = 0) is a unique, repeatable termination.  It is insensitive to 
the length of transmission line to the matched load, so that measurements can be made 
without requiring the reference planes (the port connectors) to be located directly at the 
device under measurement (or being described).  A matched load is a natural structure 
that can maintain its character over a very broad frequency range. 
 
Conversion from S-parameters to other parameter sets is a matter of routine algebra 
 
Each of the many equivalent parameter sets is uniquely useful for a given circuit 
topology.  For example, the ABCD and T matrices are adept at cascaded networks, 
while the Z and Y parameter sets can be directly evaluated for tee and pi networks, 
respectively.  However, the conversion process, while complex appearing, lends itself to 
repeated routines for hand or computer calculation. 
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S-parameters (in fact, all the parameter sets) benefit from the matrix toolbox.  
 
The toolbox of established matrix mathematics is directly applicable to the matrices that 
are the equivalent of the port equations of the parameter sets.  For example, the S 
matrix can be inspected for lossless, reciprocal or unilateral character.  If either or both 
of these conditions is present, many of the individual matrix elements can be determined 
by inspection. 

 
 
Equivalence of Matrix and Equation Form 
 
For a single port network, we have the following simple relationships from our study of Γ and 
Smith chart. 
 

b1 = Γa1 = S11a1 b1 = Γa1 = S11a1 
 
For a multiport network the reflection coefficient is Γ defined as 
 

bn = Γnan, so Γn = 
bn
an

  where n is the port number. 

 
Note that Γn = Snn only if all other ports are terminated, that is, only if all am = 0 for m?n.  
Otherwise it must be algebraically calculated from all the parameters. 
 
The example of 2-port equations and their equivalent matrix is shown here to emphasize that 
both forms contain the same information, but the matrix form suggests the use of formal matrix 
algebra tools as an aid to analysis: 
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It is not uncommon to consider microwave networks of three and four ports, as in power 
dividers and directional couplers.  The extension to the example of 3-port equations and 
equivalent matrix should reinforce the concept of equivalence: 
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b1 = S11a1 + S12a2 + S13a3 
b2 = S21a1 + S22a2 + S23a3 
b3 = S31a1 + S32a2 + S33a3 

 
 
Using matrix rules we can inspect an S-parameter matrix and see whether the network is 
reciprocal and whether it is lossless.  We can then use these facts to reduce the number of 
independent variables in the matrix, so that we can more easily evaluate the matrix elements (the 
parameters of the equations). 



EEE 194 RF S-Parameter Matrices  
 

- 3 - 
 

Which Matrices Are Used When? 
 
We've seen that the equations and related matrix expressions all involve various combinations of 
an, bn, Vn, and In.  Certain of the forms are more easily evaluated in specific network 
topologies. 
 
For example, suppose the network is composed of impedances as here 
 

Za

Z b

Z c

1 2

 
 
If we considering the impedance at port one for an open-circuited port 2, we see that 
 
Z11 = Za + Zb and similarly Z22 = Zc + Zb  
. 
If we apply input current I1 the open circuit output voltage is I1Zb, so Z12 = Zb,. 
 
Solving for Z11, Z12 and Z22 we find 
 
Z11 - Z12 = Za  
 
Z22 - Z12 = Zc and 
 
Z12 = Z21 = Zb  
 
This defines the parameters of the Z matrix description 
 

[V] = [Z][I] V1 = Z11 I1 + Z12 I2 
V2 = Z21 I1 + Z22 I2 

 
The T network lends itself to the Z matrix description, which can then be converted to the 
equivalent S matrix for S-parameter measurements and operations. 
 
Now consider the p form of a network, shown here: 
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Ya

Yb Yc1 2

 
 
If we consider the admittance at port 1 for shorted port 2, we see that for this network 
 
Y11 + Y12 = Ya; similarly 
 
Y22 + Y12 = Yc and 
 
Y12 = -Yb  

[I] = [Y][V] I1 = Y11 V1 + Y12 V2 
I2 = Y21 V1 + Y22 V2 

 
Now consider the application of the ABCD matrix.  The fact that the output voltage and current 
of the first of two cascaded networks are equal to the input voltage and the negative of the input 
current, respectively, of the second network makes the ABCD matrix a natural choice because 
is explicitly deals with the parameters Vn and In. 
 

 V1 = A V2 + B I2 
I1  = C V2 + D I2 

 

[ABCD] [ABCD]

 
 
So by matrix multiplication, we can find the ABCD description of cascaded networks. 
 
A last consideration is the question of a shift in reference planes, which is handled well by the S 
matrix.  If we ask for the S matrix description of the following network 
 

[S]Zo,  θ1 Zo,  θ2
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we find that it is simply [S'] = [θ1][S][θ2], where [θn] is defined such that all terms are zero 
except the diagonal terms, which are e-j2θn. 
 
 
Useful Matrix Operations 
 
Certain simple matrix operations are useful in manipulating and evaluating S-parameter matrices.  
They include 
 
• Multiplication (cascade ABCD or shift of reference plane 
• Test for reciprocity 
• Test for losslessness 
• Test for unilateral transmission 
 
Multiplication of matrices can be used to determine the ABCD or S parameters of cascaded 
networks of simpler forms. 
 
The test for reciprocity requires that the matrix be symmetric, that is Smn=Snm.  This can 
generally be determined by inspection. 
 
The test for losslessness is that the sum of the SmnSmn* of any column must be unity.  If the 
network is reciprocal, the matrix is symmetric and the same can be said of any row. 
 
The test for unilateral transmission is that S12 = 0. 
 
 
ABCD Example:  Quarter- and Half-Wave Transmission Lines 
 
The usefulness of ABCD parameters can be seen in an example that has been the subject of a 
homework problem.  Consider a transmission line of length l. 

Z LZ o

l

V 1

I 2

 
 
The ABCD parameters of this network relate Vi and Ii, such that 
 

V1 = A V2 + B I2, and 
 
I1 = C V2 + D I2. 
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The ABCD matrix of a length of transmission line l of Zo and ß is 
 

A = cos ßl B = j Zo sin ßl 
 
C = j Yo sin ßl D = cos ßl 

 
Note that, for cos ßl = 0 (that is, for ßl=p/2, a quarter wavelength or odd multiple) the ABCD 
matrix becomes simply 
 

A = 0 B = j Zo 
 
C = j Yo D = 0 

 
which implies that I2 = V1/j Zo independent of V2 or I1.  The fact that the output current 
depends only upon the input voltage and the characteristic impedance (regardless of the load 
impedance) is useful to construct feed structures for phased antennas, in which the element 
currents are the key parameters.  If it desired to control the currents of several loads of varying 
impedance, each can be fed through identical quarter-wave lines that are paralleled at their 
inputs, thus insuring that, since they all have the same V1 they all have the same I2. 
 
Similarly, if sin ßl = 0 (that is, for ßl=p, a half wavelength or multiple) the ABCD matrix 
becomes simply 
 

A = -1 B = 0 
 
C = 0 D = -1 

 
which implies that V2 = -V1 and I2 = -I1 independent of the terminating impedance at end 2. 
 
 
Review of Transmission Lines 
 
For the purpose of characterizing microwave multiport networks, key transmission line concepts 
are 

1) Traveling waves in both directions, V+ and V- 
2)  Characteristic impedance Zo and propagation constant jß  

3) Reflection coefficient Γ=
ZL - Zo
ZL + Zo

  for complex load ZL 
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4) Standing waves resulting from Γ?0 
5) Transformation of ZL through line of Zo and length ßl 

6) Description of Γ and Z on the Smith chart (polar graph of Γ) 
 
 
Review of Scattering Matrix 

1) Normalization with respect to Zo  of wave amplitudes: 

  a = 
V+

Zo
  and b = 

V-

Zo
 , so power is aa* and bb* 

2)  Relationship of bn and an:  bn = Γn an 
3) Expressions for b1 and b2 at reference planes: 
 b1 = S11a1 + S12a2 
 b2 = S21a1 + S22a2 
4) Definitions of Sii: 

 S11 = 
b1
a1

  for a2 = 0, i.e., input Γ for output terminated in Zo. 

 S21 = 
b2
a1

  for a2 = 0, i.e., forward transmission ratio with Zo load.  

 S22 = 
b2
a2

  for a1 = 0, i.e., output Γ for input terminated in Zo.  

 S21 = 
b1
a2

  for a1 = 0, i.e., reverse transmission ratio with Zo source.  

 lS21l2 = Transducer power gain with Zo source and load.  
5) Definitions of ΓL, Γs, Γin and Γout: 

 ΓL = 
ZL - Zo
ZL + Zo

 , the reflection coefficient of the load 

 Γs = 
Zs - Zo
Zs + Zo

 , the reflection coefficient of the source 

 Γin = 
Zin - Zo
Zin + Zo

  = S11+
S12S21ΓL
1-S22ΓL

 , the input reflection coefficient 

 Γout = 
Zout - Zo
Zout + Zo

  = S22+
S12S21Γs
1-S11Γs

 , the output reflection coefficient 

6) Power Gain G, Available Gain GA, Transducer Gain GT: 

 

 G = 
PL
Pin

  = 
power delivered to the load
power input to the network  
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 GA = 
Pavout
Pavs

  = 
power available from the network
power available from the source   

 

 GT = 
PL

Pavs
  = 

power delivered to the load
power available from the source  

 
Power Gain Equations 
 
The equations for the various power gain definitions are 
 

1) G = 
PL
Pin

  = 
1

1 - lΓinl2
  lS21l2 

1 - lΓLl2

l1 - S22ΓLl2
   

 

2) GA = 
Pavout
Pavs

  = 
1 - lΓsl2

l1 - S11ϖsl2
  lS21l2 1

1 - lΓoutl2
   

 

3) GT = 
PL

Pavs
  = 

1 - lΓsl2

l1 - ΓinΓsl2
  lS21l2 

1 - lΓLl2

l1 - S22ΓLl2
   

       = 
1 - lΓsl2

l1 - S11Γsl2
  lS21l2 

1 - lΓLl2

l1 - ΓoutΓLl2
  

 
The expressions for Γin and Γout are 

1) Γin = S11+
S12S21ΓL

1-S22ΓL
   

2) Γout = S22+
S12S21Γs

1-S11Γs
   

 
For a unilateral network, S12=0 and 

1) Γin = S11 if S12=0 (unilateral network) 
2) Γout = S22 if S12=0 (unilateral network) 

 
The transducer gain GT can be expressed as the product of three gain contributions 
 
GT=GsGoGL, where 
 
Go = lS21l2  
 

Gs =  
1 - lΓsl2

l1 - ΓinΓsl2
  and 
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GL = 
1 - lΓLl2

l1 - S22ΓLl2
  

 

Zo

Zo

Γs inΓ
out

Γ
L

Γ

Input 
Matching 

Circuit 
G s

Output 
Matching 

Circuit 
G L

Transistor 
[S] 
G o

 
If the device is unilateral, or sufficiently so that S12 is small enough to be ignored, the unilateral 
transducer gain GTU is simplified because 
 

GsU = 
1 - lΓsl2

l1 - S11Γsl2
 , where the subscript U indicates unilateral gain. 

 
In practice, the difference between GT and GTU is often quite small, as it is desirable for devices 
to be unilateral if possible. 
 
The components of GTU can also be expressed in decibel form, so that 
 
GTU (dB) = Gs (dB) + Go (dB) + GL (dB). 
 
We can maximize Gs and GL by setting Γs = S11* and ΓL = S22* so that 
 

Gsmax = 
1

1 - lS11l2
   and 

 

GLmax = 
1

1 - lS22l2
 , so that 

 

GTUmax =  
1

1 - lS11l2
  lS21l2 

1
1 - lS22l2

  

 
Note that, if lS11l=1 or lS22l=1, GTUmax  is infinite.  This raises the question of stability, which 
will be examined when we discuss amplifiers and oscillators.   
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Review of General Scheme of Solving Microwave Problems 
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